Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 2640-2650, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629528

RESUMO

DOM is the largest reservoir of organic carbon in the world, and it plays a crucial role in the biogeochemical cycles of natural water bodies. A river is a transition area connecting source water and receiving water that controls the DOM exchange between them. Therefore, in this study, ultraviolet visible spectroscopy (UV-vis) and three-dimensional fluorescence spectroscopy (EEMs) combined with parallel factor analysis (PARAFAC) were used to analyze the spectral characteristics and sources of dissolved organic matter in the Fuhe River, Xiaobai River, Baigouyin River, and Puhe River of Baiyangdian. The results showed that a245 and a355 in the Fuhe River and Xiaobai River were significantly higher than those in the Baigouyin River and Puhe River. E2/E3 showed that the DOM relative molecular mass of the inflow river water body was Puhe River > Baigouyin River > Fuhe River > Xiaobai River. Three components, tyrosine-like (C1), terrigenous humus (C2), and tryptophan-like (C3), were determined using three-dimensional fluorescence through PARAFAC. There was no difference among the fluorescence components (P>0.05), but there were differences among the C2 and C3 components (P<0.05). The proportion of easily degradable protein-like components (C1+C3) was higher than that of humus-like components (C2). The autogeny index BIX was greater than 1, and the humification index HIX was less than 4, indicating that the autogeny characteristics of the river bodies were obvious, and the humification degree was weak. The FI index was the highest (1.96±0.25), and the HIX index was the lowest (0.46±0.08), and the self-generated source characteristics gradually strengthened along the direction of the river entering the lake, indicating that the water body of the Fuhe River showed higher endogenous and autogenic characteristics. Based on the correlation analysis of fluorescence components and characteristic parameters of DOM, the correlations between the Fuhe River and Xiaobaihe River and between the Baigouyin River and Puhe River bodies were similar. The correlation between fluorescence components of DOM and water quality parameters of each lake was significantly different, and it was strongly correlated with nitrogen and phosphorus in water. According to multiple linear regression analysis, there was no significant difference among C1 components, but there was a significant difference between C2 and C3 components. In summary, the carbon cycle process of Baiyangdian Lake was further understood through the study on the DOM spectral characteristics and sources of the inflow river waters in the summer flood season.

2.
J Hazard Mater ; 470: 134171, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569339

RESUMO

In lake ecosystems, pelagic-benthic coupling strength (PBCS) is closely related to foodweb structure and pollutant transport. However, the trophic transfer of antibiotics in a benthic-pelagic coupling foodweb (BPCFW) and the manner in which PBCS influences the trophic magnification factor (TMFs) of antibiotics is still not well understood in the whole lake. Herein, the trophic transfer behavior of 12 quinolone antibiotics (QNs) in the BPCFW of Baiyangdian Lake were studied during the period of 2018-2019. It was revealed that 24 dominant species were contained in the BPCFW, and the trophic level was 0.42-2.94. Seven QNs were detected in organisms, the detection frequencies of ofloxacin (OFL), flumequine (FLU), norfloxacin (NOR), and enrofloxacin (ENR) were higher than other QNs. The ∑QN concentration in all species was 11.3-321 ng/g dw. The TMFs for ENR and NOR were trophic magnification, while for FLU/OFL it was trophic dilution. The PBCS showed spatial-temporal variation, with a range of 0.6977-0.7910. The TMFs of ENR, FLU, and OFL were significantly positively correlated with PBCS. Phytoplankton and macrophyte biomasses showed indirect impact on the TMFs of QNs by directly influencing the PBCS. Therefore, the PBCS was the direct influencing factor for the TMFs of chemicals.


Assuntos
Antibacterianos , Monitoramento Ambiental , Cadeia Alimentar , Lagos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Quinolonas , China
3.
Sci Total Environ ; 919: 170788, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342453

RESUMO

Rivers as a critical sink for antibiotic resistance genes (ARGs), and the distribution and spread of ARGs are related to environmental factors, human activities, and biotic factors (e.g. mobile genetic elements (MGEs)). However, the potential link among ARGs, microbial community, and MGEs in rivers under different antibiotic concentration and human activities remains unclear. In this study, 2 urban rivers (URs), 1 rural-urban river (RUR), and 2 rural rivers (RRs) were investigated to identify the spatial-temporal variation and driving force of ARGs. The total concentration of quinolones (QNs) was 160.1-2151 ng·g-1 in URs, 23.34-1188 ng·g-1 in RUR, and 16.39-85.98 ng·g-1 in RRs. Total population (TP), gross domestic production (GDP), sewage, industrial enterprise (IE), and IEGDP appeared significantly spatial difference in URs, RUR, and RRs. In terms of ARGs, 145-161 subtypes were detected in URs, 59-61 subtypes in RURs, and 46-79 subtypes in RRs. For MGEs, 55-60 MGEs subtypes were detected in URs, 29-30 subtypes in RUR, and 29-35 subtypes in RRs. Significantly positive correlation between MGEs and ARGs were found in these rivers. More ARGs subtypes were related to MGEs in URs than those in RUR and RRs. Overall, MGEs and QNs showed significantly direct positive impact on the abundance of ARGs in all rivers, while microbial community was significantly positive impact on the ARGs abundance in URs and RUR. The ARGs abundance in URs/RUR were directly positive influenced by microbial community/MGEs/socioeconomic elements (SEs)/QNs, while those in RRs were directly positive influenced by QNs/MGEs and indirectly positive impacted by SEs. Most QNs resistance risk showed significantly positive correlation with the abundance of ARGs types. Therefore, not only need to consider the concentration of antibiotics, but also should pay more attention to SEs and MGEs in antibiotics risk management and control.


Assuntos
Microbiota , Quinolonas , Humanos , Antibacterianos/farmacologia , Genes Bacterianos , Rios , Resistência Microbiana a Medicamentos/genética , Atividades Humanas , Sequências Repetitivas Dispersas
4.
Huan Jing Ke Xue ; 44(9): 4775-4784, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699797

RESUMO

The "14th Five-Year Plan" period is the key stage for southern Hebei cities (Shijiazhuang, Xingtai, and Handan) to be removed from the bottom ten of the Air Quality Composite Index. The hourly ozone (O3) data of 15 country-controlled monitoring stations in the southern cities of Hebei Province from April to October 2020, hourly data of three volatile organic compound (VOCs) supersites, and the meteorological data of the same period were used for analysis, combined with the spatiotemporal succession, O3 formation potential (OFP), backward trajectory modeling, and spatial statistical modeling. The results showed the following:firstly, the temporal variations in O3 in southern cities of Hebei Province from April to October presented an inverted "U" shape, and the spatial distribution was high in the south and low in the north. O3 pollution was the most serious in June, with Xingtai (233.8 µg·m-3)>Handan (225.2 µg·m-3)>Shijiazhuang (224.8 µg·m-3). O3 was positively correlated with temperature and wind speed and negatively correlated with humidity and VOCs; furthermore, the ρ(TVOC) from April to October followed the order of Xingtai (274 µg·m-3)>Shijiazhuang (266 µg·m-3)>Handan (218 µg·m-3). The total OFP of alkenes and aromatics accounted for more than half; moreover, the trajectory of O3 pollution in southern cities of Hebei Province showed spatial directionality and relevance. The highest mass concentration of O3 (198.92 µg·m-3) was in the trajectory from Shijiazhuang to Xingtai, and the highest frequency of O3 pollution was in the trajectory from Handan to Xingtai. Moreover, the transmission contributions of O3from Xingtai to Shijiazhuang agglomerations were high (27.39%), and Handan played a significant role in the transmission contribution of O3 to Xingtai (32.76%).

5.
Huan Jing Ke Xue ; 44(9): 4884-4895, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699807

RESUMO

Increasing attention has been paid to the heavy metal pollution in groundwater. The source analysis and risk assessment of heavy metals will provide data and method support for the targeted control of heavy metal pollution in groundwater. In this study, 20 sampling sites were selected in Shijiazhuang City. The APCS-MLR model and health risk model were applied to analyze and evaluate the pollution sources and health risks of 10 types of heavy metals in the groundwater of Shijiazhuang. The results showed that ① the mean concentration of heavy metals in groundwater followed the order of Fe>Zn>Mn>Cu>Al>Pb>Cr>As>Cd>Hg, and the mean ρ(Fe) and ρ(Pb) were 260.3 µg·L-1 and 10.01 µg·L-1, respectively. According to the results of the single factor and Nemerow index, Pb, Fe, and Cd primarily contributed to the heavy metal pollution in the groundwater. ② The concentration of heavy metals ranged from 47.30 to 2560 µg·L-1. In terms of spatial distribution, the highest concentration appeared at S3 (2560 µg·L-1), whereas the lowest concentration was at S9 (47.30 µg·L-1). ③ Source analysis results showed that industrial and agricultural activities, transportation emission, and geological background were the major heavy metal sources, among which the contribution of industrial and agricultural activities was the highest (47.83%). ④ The industrial-agricultural activities posed a potential threat to adults (HI>1); however, the non-cancer and the cancer risks of other sources for both adults and children were at an acceptable level (HI<1) and potential threat level, respectively; industrial-agricultural activities were the major source of non-cancer (adults:52.46%, children:52.45%) and cancer risks (adults:65.22%, children:65.69%), among which Cd and As showed high cancer risk. Therefore, to ensure the safety of the groundwater environment, strictly controlling the pollution sources and further strengthening the risk control of heavy metal pollution in groundwater are necessary.


Assuntos
Água Subterrânea , Metais Pesados , Adulto , Criança , Humanos , Cádmio , Chumbo , Medição de Risco , China
6.
Huan Jing Ke Xue ; 44(9): 4927-4940, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699811

RESUMO

The current situation of antibiotic pollution in lakes is critical. At present, most of the previous studies on antibiotics in lakes have focused on the spatiotemporal distribution and risk assessment, while less attention has been paid to the source apportionment. Ultra-high performance liquid chromatography-mass spectrometry was used to determine the concentration of tetracyclines (TCs), sulfonamides (SAs), and quinolones (QNs) in the samples. The source apportionment and source-specific risk of typical antibiotics in the study area were analyzed using the combination of a PMF model and risk quotients (RQ). The results showed that ① the total concentrations of target antibiotics (Σ antibiotics) ranged from ND to 2635 ng·L-1 for surface water and from ND to 259.8 ng·g-1 for sediments. ② The spatial distribution of QNs in surface water decreased from west to east, SAs decreased from middle to north and south, and TCs increased from middle to north and south. In the sediment, QNs decreased from middle to east and west, whereas SAs and TCs increased from east to west. ③ Aquaculture was the major antibiotic source, accounting for the highest proportion (33.2%), followed by sewage treatment plants (29.2%), livestock activities (18.9%), and domestic sewage (18.7%). ④ The ecological risk assessment results showed that enrofloxacin and flumequine were at a medium-high risk level. ⑤ For the spatial distribution of source-specific risk, the results showed that the aquaculture at S1 was at a high risk level, whereas the source-specific risks for other sites were at a medium-low risk level. In terms of source types, aquaculture was at a medium-high risk level, whereas the other sources were at a medium-low risk level. Therefore, considering the major sources and source-specific risk level of antibiotics, more precise and scientific antibiotic risk control should be adopted in Baiyangdian Lake.


Assuntos
Antibacterianos , Lagos , Esgotos , Sulfanilamida , Enrofloxacina , Sulfonamidas
7.
Huan Jing Ke Xue ; 44(9): 5006-5016, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699818

RESUMO

For resolving the problems of poor nitrogen removal efficiency and substandard effluent quality in wastewater treatment plants during winter, a cold-tolerant strain Glutamicibacter sp. WS1, with heterotrophic nitrification-aerobic denitrification ability, was isolated from activated sludge. The functional genes for nitrogen conversion of strain WS1 were amplified by PCR, and the nitrogen removal characteristics of the strain were verified under different nitrogen sources at 15℃. In addition, the effects of environmental factors on the aerobic denitrification performance of the strain were explored at low temperature. Finally, a reasonable nitrogen metabolism pathway of strain WS1 was resolved based on functional genes and nitrogen balance analysis. The results showed that strain WS1 contained functional genes related to nitrogen conversion, including amoA, napA, nirS, and nirK genes. Notably, nirS and nirK genes coexisted in the strain. At the low temperature of 15℃, with NH4+-N, NO3--N, NO2--N+NO3--N, and NH4+-N+NO3--N as nitrogen sources, the corresponding removal efficiencies of strain WS1 were 100%, 98.10%, 99.87%+100%, and 100%+94.92%, respectively. The optimal denitrification performance of the strain was achieved with sodium citrate as the carbon source, C/N of 16, pH of 8, DO of 4.5-6.8 mg·L-1, and temperature of 30℃. In addition, the NO3--N removal efficiency of strain WS1 reached 92.50% under low temperature (15℃) and low C/N (10) conditions. Based on the results of PCR amplification and nitrogen balance analysis, heterotrophic nitrification-aerobic denitrification/aerobic denitrification and assimilation were the main pathways for nitrogen substrate removal by strain WS1, in which most of the inorganic nitrogen (47%-56%) was converted to gaseous nitrogen through heterotrophic nitrification-aerobic denitrification/aerobic denitrification. Strain WS1 has broad application prospects in the treatment of low-temperature nitrogenous wastewater.


Assuntos
Desnitrificação , Nitrogênio , Temperatura , Nitrificação , Bactérias
8.
Huan Jing Ke Xue ; 44(9): 5164-5175, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699834

RESUMO

The structure and function of microbial communities are affected by several environmental factors. To clarify the spatial-temporal changes and main influencing factors of soil microbial communities in a typical pharmaceutical city, it is urgent to study the spatial-temporal changes in microbial communities in soils for typical cities. Shijiazhuang City was selected as the study area, and 12 sampling sites were selected. The topsoil was collected in June (summer) and September (autumn) of 2021. The 16S rRNA high-throughput sequencing technology was used to study the structure and function of microbial communities in the soil and explore their spatial-temporal changes. Concurrently, Pearson correlation analysis was applied to establish the correlation between the microbial community and environmental factors, and identify the main driving factors of temporal and spatial changes in the microbial community. The results showed that:① Actinobaciota and Proteobateria were the main dominant bacteria in the surface soil of Shijiazhuang City; at the phylum level, the relative abundance of Actinobacteria and Proteobateria decreased from summer to autumn; at the genus level, the dominant genera were Arthrobacter and unknown genera in summer and Arthrobacter and Candidatus_Nitrocosmicus in autumn, which showed significant seasonal differences (P<0.05). ② For seasonal variation, the mean values of the Simpson, Ace, and Chao indices increased, whereas the mean values of OTU decreased; for spatial variation, the Shannon and Simpson indices showed significant spatial difference (P<0.01 and P<0.05). ③ There were no significant spatial-temporal differences in various functional genes; thereinto, the relative abundances of energy production and transformation functional genes were the highest (24.06%-24.84% in summer and 24.63%-25.98% in autumn, respectively). ④ The compositions of microbial community, diversity index, and functional genes were significantly correlated with quinolone antibiotics (QNs), total phosphorus (TP), and nitrate nitrogen (NO3--N), most significantly correlated with QNs (|r|>0.900), which indicated that antibiotics were the main driving factor of soil microbial communities. Therefore, to ensure the stability of microbial community structure and function in urban soil, the comprehensive management and control of antibiotic pollution in soil should be further strengthened.


Assuntos
Antibacterianos , Microbiota , Cidades , RNA Ribossômico 16S/genética , China
9.
Environ Pollut ; 334: 122130, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394054

RESUMO

This study measured the pollution characteristics and ecological and health risks of 19 herbicides found in drinking water sources and their inflowing rivers. The targeted herbicides were prevalent in the study area, but most concentrations were well below 10 ng L-1. Acetochlor and atrazine were the dominant herbicides, although their levels were much lower than previously reported. Total herbicide residual levels were greater in April than in December and increased from upstream to downstream, resulting in the highest pollution levels found in the reservoirs, likely due to herbicides delivered from upstream and dense agricultural planting in the surrounding areas. Only atrazine and ametryn presented moderate ecological risks, while the summed risk quotients (ΣRQs) of each sample were >0.1, indicated that the total herbicide levels represented a moderate risk in all samples. For the human health risks, the risk quotients (RQ) of all target herbicides, the total RQs of each sample, and estimated life-stage RQs were far smaller than the 0.2 threshold, indicating the absence of human health risks when the water was consumed at any stage of life. However, early life stages exhibited 3-6 times higher RQ values than adulthood and should not be overlooked. And crucially, the synergistic or antagonistic effects of mixed herbicides are not well understood, and further research is needed to understand the impact of these herbicides on the ecosystem and human health, particularly possible affects in early life stages, such as infants and children.


Assuntos
Atrazina , Água Potável , Herbicidas , Poluentes Químicos da Água , Criança , Humanos , Adulto , Herbicidas/toxicidade , Herbicidas/análise , Atrazina/toxicidade , Atrazina/análise , Água Potável/análise , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China , Medição de Risco
10.
Environ Pollut ; 334: 122250, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487871

RESUMO

Microplastics (MPs) are a newly emerging type of pollutants. To date, MPs have been found in the atmosphere, soil, water, and even in human samples, posing a non-negligible threat to humans. Furthermore, multiple heavy metals have been found to co-exist with MPs or be absorbed by MPs. This leads to a widespread concern about their combined toxicity, which is currently elusive. Herein, we investigated the single or combined toxic effects of polystyrene MPs (PS-MPs) and cadmium chloride (CdCl2) on the liver and hepatocytes. After co-incubation, cadmium (Cd) can be absorbed by PS-MPs, resulting in physiochemical alterations of PS-MPs. In vivo and in vitro experiments revealed that PS-MPs solely or together with CdCl2 induced ferroptosis in hepatocytes, a newly defined programmed cell death characterized by lipid oxidation and iron accumulation. PS-MPs exerted more ferroptotic effect on hepatocytes than CdCl2, and combined exposure to PS-MPs and CdCl2 enhanced their ferroptotic effect, mainly by stimulating reactive oxygen species (ROS) production and inhibiting antioxidant activity. Upon single or combined exposure to PS-MPs and CdCl2, the induction of ferroptosis in hepatocytes can be inhibited by N-acetyl-cysteine (NAC, an ROS scavenger), deferoxamine (DFO, an iron chelator), and particularly ferrostatin-1 (Fer-1, a specific ferroptosis inhibitor). Fer-1 efficiently rescued the cell viability of hepatocytes upon exposure to PS-MPs and CdCl2 through enhancing the antioxidant system via upregulating GPX4 and SLC7A11. These findings would contribute to an in-depth understanding of the single and combined toxicity of microplastics and cadmium.


Assuntos
Ferroptose , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Poliestirenos/toxicidade , Cádmio/toxicidade , Plásticos/toxicidade , Espécies Reativas de Oxigênio , Antioxidantes , Poluentes Químicos da Água/toxicidade
11.
Chemosphere ; 337: 139364, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391084

RESUMO

Microplastics (MPs) and tetracycline are both emerging environmental pollutants that threaten human health. The toxic impacts of their single and coexposure on the intestine and gut microbiota have not been well studied in mammals. Given the spatial functional characteristics of the intestine, it is important to know whether the toxicities of MPs and tetracycline in different intestinal segments are distinct. This study investigated the pathological and functional injuries of different intestinal segments and the microbial disorder upon exposure to polystyrene microplastics (PS-MPs) and/or tetracycline hydrochloride (TCH). Both PS-MPs and TCH altered the intestinal morphology and induced functional impairment. However, the PS-MPs primarily damaged the colon, while TCH mainly damaged the small intestine, especially the jejunum. Combined treatment evoked ameliorative adverse effects on the intestinal segments except for the ileum. Gut microbiota analysis revealed that PS-MPs and/or TCH decreased gut microbiota diversity, especially PS-MPs. In addition, PS-MPs and TCH affected the microflora metabolic processes, especially protein absorption and digestion. Gut microbiota dysbiosis could partly lead to the physical and functional damage induced by PS-MPs and TCH. These findings enhance our knowledge regarding the hazards of coexisting microplastics and antibiotics for mammalian intestinal health.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Microplásticos/toxicidade , Plásticos/toxicidade , Tetraciclina/toxicidade , Poliestirenos/toxicidade , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Mamíferos
12.
Huan Jing Ke Xue ; 44(4): 2223-2233, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040971

RESUMO

Due to their importance in human medicine, quinolones (QNs), as a typical class of antibiotics, are considered to be the "highest priority critically important antimicrobials" by the World Health Organization (WHO). In order to clarify the spatial-temporal variation and risk of QNs in soil, 18 representative topsoil samples were respectively collected in September 2020 (autumn) and June 2021 (summer). The contents of QNs antibiotics in soil samples were determined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and the ecological risk and resistance risk were calculated using the risk quotient method (RQ). The results showed that:① the average content of QNs decreased from autumn to summer (the average contents of QNs were 94.88 µg·kg-1in autumn and 44.46 µg·kg-1 in summer); the highest values appeared in the middle area. ② The average proportion of silt was without change, whereas the average proportion of clay and sand was increased and decreased, respectively; the average contents of total phosphorus (TP), ammonia nitrogen (NH4+-N), and nitrate nitrogen (NO3--N) also decreased. ③ The content of QNs was significantly correlated with soil particle size, nitrite nitrogen (NO2--N), and nitrate nitrogen (NO3--N) (P<0.05). ④ The combined ecological risk of QNs showed high risk level (RQsum>1), whereas the combined resistance risk of QNs showed medium risk level (0.1

Assuntos
Quinolonas , Solo , Humanos , Solo/química , Nitratos/análise , Espectrometria de Massas em Tandem , Antibacterianos/análise , Quinolonas/análise , Medição de Risco , Nitrogênio/análise
13.
J Hazard Mater ; 451: 131180, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924746

RESUMO

This study investigated the occurrence of hexabromocyclododecanes (HBCDs) in soil-maize system around Baiyangdian Lake. The total concentration of ΣHBCDs was in the order of industrial area > residential area > marginal area > Fuhe River estuary in soil. γ-HBCD was predominated in soils, roots and stems, while α-HBCD was the main diastereoisomer in leaves and kernels. Concentration of ΣHBCDs and three diastereoisomer concentrations in soils were significantly reduced and remained low level from 2018 to 2019. Selectivity enrichment of (+)α- and (-)γ-HBCD was found in soils, roots, stems and leaves, whereas only (+)ß-HBCD dominated in stems. Most of the total root bioaccumulation factors (ΣRCFs) were less than 1.0, but no significant correlation was showed between translocation factors (TFs) and log Kow. RCFs and TFs of enantiomers suggested (-)ß- and (-)γ-HBCD were easily translocated from soil to roots, while (+)α-, (-)ß- and (-)γ-HBCD tended to translocate from stems to leaves. Estimated daily intake (EDI) and of ΣHBCDs, diastereoisomers and enantiomers were all lower than the threshold value, while the Calculated margins of exposure (MOE) were well above the threshold value, which demonstrate the safe consumption of Maize around Baiyangdian Lake.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Zea mays , Solo , Lagos , Retardadores de Chama/análise , Hidrocarbonetos Bromados/análise , Estereoisomerismo , China , Monitoramento Ambiental
14.
Huan Jing Ke Xue ; 44(3): 1593-1601, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922220

RESUMO

Per- and polyfluoroalkyl substances (PFASs, n=22), including emerging alternatives, in dust samples were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to study their pollution characteristics. These samples were collected from main and minor roads in Shijiazhuang. Some of the roads were located near sewage treatment plants and fire stations. The results showed that PFASs were ubiquitous in the road dust of Shijiazhuang; in particular, hexafluoropropylene oxide dimer acid (HFPO-DA), an alternative, was measured for the first time in China. The total concentrations of PFASs ranged from 2.62 to 137.65 ng·g-1. Perfluorooctanoic acid (PFOA) was the dominant PFAS, followed by perfluorobutanoic acid (PFBA), HFPO-DA, and perfluorooctane sulfonic acid (PFOS). The highest and lowest levels of PFASs were observed in the northwest and southeast regions of Shijiazhuang, respectively. The compositions of PFASs were obviously different in road dust near sewage treatment plants and fire stations, especially for the types of emerging alternatives. Health risk assessment indicated that road dust intake had a low risk of human exposure to PFASs and emerging alternatives. Among the three routes (ingestion intake, inhalation intake, and dermal contact), ingestion intake was the main route for PFASs and emerging alternatives in road dust to enter the human body. Under the same exposure route, the exposure dose of children was higher than that of adults.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Adulto , Criança , Humanos , Espectrometria de Massas em Tandem , Poeira/análise , Esgotos/análise , Fluorocarbonos/análise , Ácidos Alcanossulfônicos/análise , Medição de Risco , China
15.
Environ Res ; 224: 115524, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813068

RESUMO

Revealing the responses of abundant and rare aerobic denitrifying bacteria to dissolved organic matter (DOM) composition is essential for understanding the aquatic N cycle ecosystems. In this study, fluorescence region integration and high-throughput sequencing techniques were used to investigate the spatiotemporal characteristics and dynamic response of DOM and aerobic denitrifying bacteria. The DOM compositions were significantly different among the four seasons (P < 0.001) without spatial differences. Tryptophan-like substances (P2, 27.89-42.67%) and microbial metabolites (P4, 14.62-42.03%) were the dominant components, and DOM exhibited strong autogenous characteristics. Abundant (AT), moderate (MT), and rare taxa (RT) of aerobic denitrifying bacteria showed significant and spatiotemporal differences (P < 0.05). The responses of α-diversity and niche breadth of AT and RT to DOM differed. The DOM explanation proportion for aerobic denitrifying bacteria exhibited spatiotemporal differences based on redundancy analysis. Foliate-like substances (P3) had the highest interpretation rate of AT in spring and summer, while humic-like substances (P5) had the highest interpretation rate of RT in spring and winter. Network analysis showed that RT networks were more complex than AT networks. Pseudomonas was the main genus associated with DOM in AT on a temporal scale, and was more strongly correlated with tyrosine-like substances (P1), P2, and P5. Aeromonas was the main genus associated with DOM in AT on a spatial scale and was more strongly correlated with P1 and P5. Magnetospirillum was the main genus associated with DOM in RT on a spatiotemporal scale, which was more sensitive to P3 and P4. Special operational taxonomic units were transformed between AT and RT with seasonal changes, but not between the two regions. To summarize, our results revealed that bacteria with different abundances utilized DOM components differently, and provides new insight on the spatiotemporal response of DOM and aerobic denitrifying bacteria in aquatic ecosystems of biogeochemical significance.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Lagos/química , Ecossistema , Água , Bactérias , China , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos
16.
Sci Total Environ ; 868: 161615, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36681331

RESUMO

Dissolved Organic Matter (DOM), an important part of the carbon cycle in reservoir ecosystems, has a great impact on aquatic environment to recognize the conversion process of different media DOM. The distribution, spectral characteristics, and sources of DOM in Gangnan Reservoir during thermal stratification were analyzed using ultraviolet-visible absorption spectroscopy and excitation-emission matrix spectroscopy. Three humic-like components (C2, C3, and C4) and two protein-like components (C1 and C5) were identified. The proportions of the humic-like components increased with the progression of thermal stratification (C2 and C3 were dominant), whereas the protein-like components decreased in proportion, and the trend in the interstitial water was constant (C3 and C4 were dominant). The proportion of the humic-like components in the sediments was highest during the stationary period of thermal stratification (C2 and C3 were dominant). C2 and C3 were significantly correlated in the water body and interstitial water (P < 0.001), while C1 and C5 were correlated in the sediment (P < 0.05). In the water body, C2 and C3 were negatively correlated during the formative period of thermal stratification (slope = -1.85; R2 = 0.52), strongly positively correlated during the stationary period (slope = 0.76; R2 = 0.94), and positively correlated during the weakening period of thermal stratification (slope = 0.46; R2 = 0.30). With the progression of thermal stratification, the relative contribution of endogenous substances decreased gradually, whereas the humification degree increased in the water body and interstitial water. The protein-like components and key physicochemical factors (Fe, Mn, TN, TP, and CODMn) were significantly correlated during the formative period (P < 0.05), and humic-like components and key physicochemical factors (NO2--N and TN) were significantly correlated during the stationary and weakening periods (P < 0.05). C1, C4, and C5 indicated NO3--N during the formative period; C2 and C3 indicated NO3--N during the stationary period; and C2 and C4 indicated NO3--N during the weakening period in the water body. These findings enhance the understanding the mutual transformation processes of DOM in reservoir ecosystems and could guide water quality management.

17.
J Hazard Mater ; 441: 129908, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36115093

RESUMO

Many studies have examined per- and poly-fluoroalkyl substances (PFASs) in human blood. However, the distribution of PFASs in human blood remains not well known, especially for perfluorooctane sulfonate (PFOS) precursors. In this study, human blood samples (n = 162) were collected from general Chinese population, and then the isomer-specific partitioning of PFASs between human plasma and red blood cells (RBCs) were investigated. Perfluorooctanoate (PFOA) and PFOS were consistently the predominant PFASs in both human plasma and RBCs. In human blood, among C4-C7 perfluoroalkyl carboxylates (PFCAs), the calculated mean mass fraction in plasma (Fp) values increased from 0.76 to 0.82 with the increasing chain length. C7-C13 PFCAs exhibited a trend of gradually decreasing mean Fp with chain length. Among PFAS precursors, 6:2 fluorotelomer phosphate diester had the highest mean Fp value (0.87 ± 0.11). Calculated Fp values of N-methyl perfluorooctanesulfonamide (N-MeFOSA) and N-ethyl perfluorooctanesulfonamide (N-EtFOSA) were 0.66 ± 0.13 and 0.70 ± 0.12, respectively. Individual branched isomers consistently had greater Fp values than their corresponding linear isomers for PFOA, PFHxS, and perfluoroctane sulfonamide. To our knowledge, this study first reports the distribution of N-MeFOSA and N-EtFOSA in human blood, contributing to the better understanding of the occurrence and fate of PFASs in humans.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Caprilatos , Ácidos Carboxílicos , Humanos , Sulfonamidas
18.
Anal Biochem ; 663: 115028, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572216

RESUMO

A target-triggered and exonuclease-Ⅲ-assisted strand displacement, dual-recycling amplification reaction-based biosensor was developed for the rapid, ultrasensitive and accurate detection of kanamycin. The robust profiling platform was constructed using high conductive MXene/VS2 for the electrode surface modification and high active CeCu2O4 bimetallic nanoparticles as nanozyme to improve the sensitivity as well as the catalytic signal amplification of the biosensor. Using the dual supplementary recycling of primer DNA and hairpin DNA, the electrochemical platform could accurately detect kanamycin to as low as 0.6 pM from the range of 5 pM to 5 µM. By profiling five other antibiotics, this platform exhibited high specificity, enhanced repeatability and reproducibility. Based on these intrinsic characteristics and by utilizing milk and water samples, the as-designed biosensor offers a remarkable strategy for antibiotic detection due to its favorable analytical accuracy and reliability, thereby demonstrating potential application prospect for various antibiotic biosensing in food quality control, water contamination detection and biological safety analysis.


Assuntos
Técnicas Biossensoriais , Canamicina , Canamicina/análise , Reprodutibilidade dos Testes , Técnicas Eletroquímicas , Antibacterianos/análise , DNA , Técnicas Biossensoriais/métodos , Água , Limite de Detecção
19.
Biosens Bioelectron ; 220: 114879, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36368141

RESUMO

Circulating microRNAs (miRNAs) can be regarded as reliable noninvasive biomarkers in body fluids for the early diagnosis, prognosis, and monitoring of cancers. By combining target triggered bipedal DNAzyme walker cleavage cycling amplification and planar intercalated methylene blue (MB) molecules amplification, a versatile ratiometric electrochemical biosensing system is constructed for miRNAs detection. Using the microRNA-21 (miRNA-21) as a triggered model target from breast cancer cells (MCF-7) and cervical cancer cells (HeLa), the sensitivity and feasibility of the ratiometric biosensing strategy were verified on the basis of decreased streptavidin-conjugated cupric sulfide@platinum (CuS@Pt-SA) nanozyme signal with cleaved Zn2+-dependent DNAzyme walkers as well as enhanced duplex section of MB signal, which were assisted by the modification of high electronic conductivity and specific surface area of metallic WSe2 nanoflowers on the electrode. Hence, the introduced sensing strategy of higher cleavage activity of the bipedal DNAzyme walker cyclic amplification resulted into the remarkable sensitive measurement which had a detection limit of 0.16 fM from 1 fM to 1 nM for miRNA-21. Benefiting from the precise design of the capture Hairpin DNA, this proposed method showed excellent specificity to distinguish miRNA-21 from other miRNAs sequences, in addition to possessing good stability and reproducibility. Thus, this versatility platform can be utilized to sense various miRNAs biomarkers by simple of the redesigning the capture Hairpin DNA, hence presents a great promise in clinical application towards early cancer diagnosis, biological analysis and prognosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , DNA Catalítico/química , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , DNA/química , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , Limite de Detecção
20.
J Environ Sci (China) ; 125: 185-193, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375904

RESUMO

It is extremely important to analyze the contaminative behaviors of Perfluoroalkyl acids (PFAAs) due to their serious threats to urban environments which are closely related to humans. Current study aimed to explore the distribution, source apportionment and ecological risk assessment of PFAAs in surface water from Shijiazhuang, China. The concentrations of ∑PFAAs ranged from 19.5 to 125.9 ng/L in the investigation area. Perfluorobutanesulfonic acid (PFBS) and perfluoropentanoic acid (PFPeA) were the predominant contaminants (mean value: 14.3 ng/L and 16.6 ng/L, respectively). The distribution of PFAAs according to geospatial analysis and hierarchical clustering analysis (HCA) showed that higher levels of ∑PFAAs were detected in the southern surface water of Shijiazhuang and there was a stepwise decrease from the wet season to the dry season. Furthermore, based on source apportionment, the dominant potential sources were found to be wastewater treatment plant (WWTP) effluents and industrial discharge. The risk quotients (RQs) revealed low ecological risks of all PFAAs for aquatic organisms in Shijiazhuang surface water. Collectively, this study provided basic data for regulatory strategies for controlling PFAA pollutions in urban surface water.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Fluorocarbonos/análise , Rios , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água/análise , China , Ácidos Alcanossulfônicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...